How to Contact:

- info@powersmartcontrol.com
- www.powersmartcontrol.com

This SmartCtrl© Tutorial by Carlos III University is licensed under a Creative Commons Attribution 4.0 International License:

You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Based on a work at www.powersmartcontrol.com

SmartCtrl© 2009-2016 by Carlos III University of Madrid. GSEP Power Electronics Systems Group

The software SmartCtrl© described in this manual is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement.
Table of contents

1. **Introduction** ... 3

2. **Resonant Converter design** .. 3
 2.1. Perform ac analysis in PSIM ... 3
 2.2. Import the frequency response data into SmartCtrl ... 5
 2.3. Design the control loop in SmartCtrl ... 6
 2.4. Validate the control loop design .. 8
1. Introduction

SmartCtrl is a general-purpose controller design software specifically for power electronics application. This tutorial is intended to guide you, step by step, to export to PSIM the regulator designed in SmartCtrl and to export to SmartCtrl the frequency response of a converter from AC sweep just performed in PSIM.

SmartCtrl to PSIM direction

We are going to start from a regulator designed in SmartCtrl. For example we can use one of the sample designn those cases that we have designed the regulator is SmartCtrl and we

At first Let´s a consider Since the transfer function of a resonant converter is difficult to derive, one of the main purposes of this example is to illustrate that the resonant converter can be represented by the imported ac sweep results from PSIM, and the control loop of the resonant converter can be designed using SmartCtrl. This example demonstrates the power and flexibility of using SmartCtrl in combination with PSIM to design the control loop of any power converters.

2. Resonant Converter design

The first step is to obtain the resonant converter frequency response by means of the PSIM ac analysis.

2.1. Perform ac analysis in PSIM

The frequency response of the plant is obtained from the switch mode form of the resonant converter using PSIM's ac analysis. The converter circuit is shown in the figure below. To perform the ac analysis, the ac sweep block and the ac source for signal injection are needed in the circuit.
After the simulation, the frequency response of the output voltage versus the control variable T_{on} is obtained, as shown below. Once the frequency response is obtained, it can be imported into SmartCtrl.
2.2. Import the frequency response data into SmartCtrl

Since the selected converter is voltage mode controlled, the “txt file (voltage mode)” must be selected. Click on the icon , or from the Data menu, select Imported transfer function -> Single loop -> Voltage mode controlled (txt file).

Next, the text file containing the frequency response data from the PSIM ac analysis is loaded. The corresponding window is shown below:

The loaded transfer function is automatically plotted as shown below:

Enter the output voltage and the switching frequency in the left lower corner of the dialog window, and click OK to continue.
2.3. Design the control loop in SmartCtrl

After the plant is defined, the next step is to select the sensor and the regulator types.

Note that the reference voltage needs to be entered in the voltage divider input data window and the modulator gain in the regulator input data window, as shown below.
Once all the control loop transfer functions are defined, the crossover frequency and the phase margin can be selected.

SmartCtrl provides a guideline and an easy way of selecting the crossover frequency and the phase margin through the **Solution Map**. Each point within the white area corresponds to a combination of cross freq. and phase margin that lead to a stable solution. In addition, when a point is selected, the attenuation given by the sensor and the regulator at the switching frequency is provided. Note that not enough attenuation at the switching frequency could provoke high frequency oscillations.

To carry out the selection, click on the **Set** button and SmartCtrl will display the solutions map. Then left click a point within the white area, and click OK to continue.

Once the crossover frequency and the phase margin are selected, the solution map will be shown on the right side of the input data window. If, at any time, these two parameters need to be changed, just click on the shown solution map as shown below.
Now accept the selected configuration and confirm the design, the program will automatically show the system performance in terms of the frequency response and transient response.

2.4. Validate the control loop design

In order to check the closed loop performance of the regulator designed by SmartCtrl, a closed loop time-domain simulation is carried out in PSIM.
Two different designs are obtained from SmartCtrl. The following table shows the control loop bandwidth (BW) and the phase margin (PM) of these two designs, as well as the regulator parameters.

<table>
<thead>
<tr>
<th>Design #1</th>
<th>Design #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth = 7.5kHz</td>
<td>Bandwidth = 5kHz</td>
</tr>
<tr>
<td>Phase Margin = 23°</td>
<td>Phase Margin = 60°</td>
</tr>
<tr>
<td>$K_p = 19.557 \mu$</td>
<td>$K_p = 8.55987 \mu$</td>
</tr>
<tr>
<td>$K_{int} = 94.4935 \mu$</td>
<td>$K_{int} = 201.726 \mu$</td>
</tr>
</tbody>
</table>

Using the two regulators from the table above, the corresponding closed loop responses are simulated in PSIM. Both the PSIM schematic and the simulation results are included below.
It can be observed from the waveforms that the first design (Design #1) tracks the reference signal more accurately than the second design (Design #2). Although Design #1 has a lower phase margin with under-damped oscillations, its higher bandwidth and higher low-frequency gain leads to a faster response.

This example shows that, *SmartCtrl in combination with PSIM*, with the capability to import frequency response results from PSIM, provide a fast and powerful platform for control loop design and optimization of any power converters.